29.11.2025 aktualisiert

**** ******** ****
verifiziert
Premiumkunde
nicht verfügbar

Software Engineer for AI and Data Systems

Weinsberg, Deutschland
Weltweit
Bachelor of Science in Engineering Business Information Systems
Weinsberg, Deutschland
Weltweit
Bachelor of Science in Engineering Business Information Systems

Profilanlagen

CV_Anton_Roesler_de.pdf

Über mich

ML & Cloud Engineer mit Fokus auf MLOps, AWS und Azure. Erfahren in der Produktivsetzung von KI-Modellen sowie im Aufbau von ETL-Pipelines, Data Engineering, Deployment und Monitoring. Über 3 Jahre Erfahrung bei BOSCH Engineering als Software Entwickler für Machine Learning und Data Use Cases.

Skills

Künstliche IntelligenzAmazon Web ServicesAmazon Elastic Compute CloudAmazon S3Data AnalysisComputer VisionAutomatisierungAutomobilindustrieMicrosoft AzureBash ShellSaasCloud ComputingCloud DatabaseCloud-EngineeringCUDADatenbankenContinuous IntegrationData ArchitectureInformation EngineeringETLDatensystemeAbfragesprachenLinuxAmazon DynamodbElasticsearchGithubInfrastrukturPythonPostgresqlMachine LearningMysqlNumpyRole Based Access ControlCloud-ServicesTensorflowServiceentwicklungSQLZeitreihenanalyseTypescriptUnstrukturierte DatenVersionierungWorkflowsParquetAWS CdkDatenverarbeitungKatalogeDatenaufnahmePytorchLarge Language ModelsKostenoptimierungJupyterFastapiMatplotlibContainerisierungData LakePysparkScikit-learnKubernetesNintexMachine Learning OperationsRestful ApisAmazon Simple Queue ServicesTerraformDaten-PipelineServerless ComputingDockerDatabricksProgramming Languages
I'm a Software Engineer for Machine Learning Systems, specialized in ML workflows, data pipelines, and deploying AI in production. My focus is on turning research models into scalable, production-ready cloud services.

Core Expertise

☁️ ML Pipelines & Workflows

I build end-to-end ML pipelines that automate the full lifecycle, from data ingestion and preprocessing to model training, deployment, and monitoring.
  1. CI/CD for ML (model testing, rollout, versioning)
  2. PySpark workflow design on Databricks
  3. Automated feature generation and dataset management
  4. Monitoring and scaling of deployed models
☁️ Productive AI Systems
I bring AI and ML into production using cloud-native design and modern MLOps practices.
  1. Event-driven and serverless architectures on AWS and Azure
  2. Model deployment with AWS Batch, Lambda, and SageMaker
  3. Containerization (Docker) and IaC (Terraform, AWS CDK)
  4. Scalable inference pipelines for Computer Vision and LLM-based services
  5. LLM Applications / Agents with Models from various providers
☁️ Data Engineering & Data Pipelines
Strong background in building data-centric systems for analytics and machine learning.
  1. ETL workflows for large-scale structured and unstructured data
  2. Time-series and sensor data processing (e.g. automotive MDF data)
  3. Metadata search and data cataloging using Elasticsearch and Databricks
  4. High-performance data transformations in PySpark and SQL
☁️ Cloud Engineering
Coming from a cloud engineering background, I apply cloud-native best practices in all my projects, including RBAC, least privilege, cost optimization, event-driven design, and serverless architectures.
I design systems around native data and ML services on AWS and Azure, often leveraging GPU-enabled compute for large-scale ML workloads.
Cloud certifications: AWS Certified Solutions Architect and AWS Certified Data Engineer.


Technologies

  1. Languages & Frameworks:
  2. My main and fluent programming language is Python, but i also write typescript, javascript, java and some C / C++
  3. PySpark, FastAPI, PyTorch, TensorFlow, scikit-learn
  4. SQL and other database specific query languages
  5. Cloud & Infrastructure:
  6. AWS (Lambda, Batch, S3, Glue, Step Functions, SageMaker, Bedrock, EC2, ECS, SQS...)
  7. Azure (Functions, Blob Storage, Batch, App Services, Queues, Manages Kubernetes...)
  8. Databricks (Lakehouse, Delta Lake, job orchestration, Unity Catalog)
  9. Terraform, Docker, GitHub Actions
  10. Data & Search:
  11. Elasticsearch (incl. Elastic Cloud, OpenSearch), Qdrant
  12. AWS DynamoDB
  13. Relational SQL DBs (Postgres, Aurora, MySQL)
  14. AI Agents & LLM Applications:
  15. RAG pipelines, vector search, autonomous AI agents
  16. Pydantic-AI, langchain & langgraph
  17. Workflow Orchestration
  18. Prefect
  19. Coiled
  20. N8N
  21. Other:
  22. GitHub, Linux, Bash, REST APIs
  23. CUDA
  24. Parquet

Mindset

As a Software Engineer first, I approach AI and Data service development with a focus on clean, maintainable, and production-ready code. My goal is to make AI systems that don’t just work in notebooks — but run reliably in production.

Sprachen

DeutschMutterspracheEnglischverhandlungssicher

Projekthistorie

Software Engineer for AI and Data Systems

BOSCH

Automobil und Fahrzeugbau

>10.000 Mitarbeiter

  1. Neural Automated Labelling
  2. Led cloud development of a 3D labelling service at petabyte scale, reducing manual effort by over 90% and halving costs.
  3. Integrated cutting-edge 4D Computer Vision models from Bosch Corporate Research into a cloud-native MLOps pipeline.
  4. Python, Microsoft Azure, Computer Vision Models, MLOps
  5. Engineering Data Lakehouse
  6. Designed and implemented a scalable Data Lakehouse architecture for ML use cases using Databricks and Delta Lake.
  7. Developed reusable PySpark-based pipeline components to enable rapid cloud deployment of new use cases.
  8. Built a Databricks-based Lakehouse for time series engineering data with ingestion pipelines and quality enforcement.
  9. Developed a high-performance metadata search application using Elasticsearch, enabling sub-second queries across millions of fields.
  10. Python, Databricks, Data Engineering, Vector Search, PySpark
  11. Customer Engineer Projects
  12. Created a scalable AWS Batch pipeline for parsing large volumes of engineering data files.
  13. Python, AWS, Data Pipelines
  14. Event Finder
  15. Designed an AI agent service for autonomous detection and explanation of anomalies in time series sensor data.
  16. Python, AI Agents, LLMs, AWS

Machine Learning Engineer

BOSCH

Automobil und Fahrzeugbau

>10.000 Mitarbeiter

  • Developed ML algorithms for automated, AI-based analysis of multivariate time series data.
  • Deployed models in a production-grade cloud application on AWS using Python.
  • Engineered data pipelines for large-scale automotive measurement data (MDF format) and contributed to building a centralized Data Lake.

Zertifikate

AWS Certified Data Engineer – Associate

Amazon Web Services

2024

AWS Certified Solutions Architect – Associate

Amazon Web Services

2023


Kontaktanfrage

Einloggen & anfragen.

Das Kontaktformular ist nur für eingeloggte Nutzer verfügbar.

RegistrierenAnmelden