26.11.2025 aktualisiert

**** ******** ****
Premiumkunde
nicht verfügbar

Industrial AI Consultant | Data Scientist | AI/ML Engineer | MLOps | GenAI | Predictive AI | KI

Berlin, Deutschland
Weltweit
Ph.D. in Astrophysics
Berlin, Deutschland
Weltweit
Ph.D. in Astrophysics

Profilanlagen

kolodzig_cv.pdf
0_cv_alex_kolodzig_20251016_ai_data_automation_engine.pdf

Über mich

Mein Weg von der Astrophysik zur Industrie-KI macht mich zu einem einzigartigen Problemlöser. Ich übersetze komplexe, verrauschte Big Data in messbaren Geschäftswert, indem ich pragmatische & robuste End-to-End KI-Lösungen entwickle, von strategischer Konzeption bis produktiver MLOps-Pipeline.

Skills

APIsKünstliche IntelligenzData AnalysisMicrosoft AzureBash ShellBig DataClusteranalyseDatenbankenContinuous IntegrationInformation EngineeringETLDevopsExperimentierenForecastingGithubPythonPostgresqlMachine LearningMongodbNosqlNumpyLeistungsvorhersageVorbeugende InstandhaltungPredictive ModellingPredictive AnalyticsProduct Information ManagementScipyTransformerSoftwareentwicklungSQLZeitreihenanalyseVisual Studio OnlineSupervised LearningTestenChatbotsLarge Language ModelsPrompt EngineeringGenerative AIJupyterGitFastapiPandasMatplotlibScikit-learnIntegrationstestsKubernetesHuggingFaceXgboostDaskPlotlyMachine Learning OperationsApi DesignErkennung von AnomalienDockerUnsupervised Learning
AI & Machine Learning
  1. Anwendungsbereiche:
  2. Predictive Maintenance (PdM) & Anomaly Detection
  3. Time-Series Forecasting & Statistische Modellierung
  4. Prozessoptimierung & Effizienzsteigerung
  5. Methoden:
  6. Supervised Learning (Regression, Classification, Gradient Boosting)
  7. Unsupervised Learning (Clustering, Dimensionality Reduction)
  8. Explainable AI (XAI)
  9. Tools:
  10. Python, Scikit-learn, XGBoost, Pandas, NumPy, SHAP, SciPy
Generative AI & NLP
  1. Architekturen & Konzepte:
  2. Retrieval-Augmented Generation (RAG)
  3. Prompt Engineering & LLM-Integration
  4. Vector Search & Semantische Ähnlichkeit
  5. Chatbots & KI-Assistenten
  6. Tools:
  7. LLM APIs (Groq, OpenAI, Mistral), Vector Databases (LanceDB), Sentence Transformers, LangChain, Streamlit, Hugging Face
MLOps & Data Engineering
  1. Konzepte:
  2. End-to-End ETL Pipeline Architektur
  3. CI/CD für Machine Learning
  4. Modell-Deployment & -Serving
  5. Experiment Tracking & Monitoring
  6. Big Data Processing
  7. Tools:
  8. Docker, Kubernetes, GitHub Actions, MLflow, Seldon Core, NATS, Dask, SQL (PostgreSQL), NoSQL (MongoDB), Azure Cloud
Core Technologies & Software Development
  1. Sprachen & Frameworks:
  2. Python, SQL, Bash
  3. API Development (FastAPI, REST)
  4. Entwicklung & Tools:
  5. Git, Jupyter, VS Code
  6. Datenvisualisierung (Matplotlib, Seaborn, Plotly)
  7. Testing (Unit & Integration Tests)

Sprachen

DeutschMutterspracheEnglischMutterspracheFranzösischgutSpanischgut

Projekthistorie

GenAI & NLP Product Strategy for Mobile App Engagement

LetsVibe GmbH

Internet und Informationstechnologie

< 10 Mitarbeiter

Project Goal
Advise a mobile app CEO by leading an R&D initiative to validate an AI-driven product vision. The goal was to define a clear, data-informed strategy and technical roadmap for using NLP to enhance user interaction, boost engagement, and de-risk a significant future investment.

Contributions
  1. Led a strategic feasibility study to evaluate the viability of using advanced NLP and sentiment analysis models to achieve key business objectives.
  2. Conducted in-depth analysis of anonymized user data to uncover actionable patterns, which directly informed the AI development and data acquisition strategy.
  3. Developed foundational data processing pipelines and machine learning baselines to establish clear, quantitative benchmarks for evaluating more complex AI solutions.
  4. Authored and presented a comprehensive AI roadmap to executive leadership, translating complex technical findings into a clear, phased, and actionable business plan.
  5. Delivered a data-driven proposal that clarified the technical path, de-risked the development process, and shaped the company's long-term AI feature strategy.

Tools
Python, Scikit-learn, Pandas, NumPy, NLTK, spaCy, Jupyter, Git, GitHub, SQL, Matplotlib, Seaborn, prompt engineering, LLM APIs, Sentiment Analysis

Industrial AI: End-to-End Predictive Anomaly Detection System

Metroscope (B2B SaaS Provider)

Energie, Wasser und Umwelt

50-250 Mitarbeiter

Project Goal
Enhance a core industrial SaaS product by architecting and deploying a next-gen, scalable anomaly detection system. The objective was to significantly boost diagnostic accuracy, ensure high reliability through robust MLOps, and increase end-user trust in the AI's predictions.

Contributions
  1. Led the complete development lifecycle, from designing and benchmarking a suite of advanced anomaly detection algorithms to their deployment in a live production environment.
  2. Architected and implemented a robust, scalable MLOps framework, fully automating the training, deployment, and continuous monitoring of machine learning models.
  3. Engineered a novel synthetic fault-injection system for rigorous, automated validation, guaranteeing the high reliability required for mission-critical industrial applications.
  4. Integrated model explainability techniques to deliver transparent, actionable insights into the root causes of anomalies, significantly increasing end-user trust and adoption.
  5. Optimized system performance and stability by resolving complex backend challenges related to concurrency, memory usage, and service timeouts under high load.
  6. Drove code quality initiatives, including enhancing CI/CD pipelines and leading a major upgrade of the core algorithmic codebase.

Tools
Python, Docker, Kubernetes, Scikit-learn, Seldon Core, SHAP, GitHub Actions, NATS, Pandas, NumPy, SQL, REST APIs, MLflow, Flask, Git, Bash, Azure, Grafana, PostgreSQL, Jupyter

Generative AI Q&A Assistant (RAG)

Internet und Informationstechnologie

< 10 Mitarbeiter

Project Goal
Build an end-to-end, production-ready Generative AI assistant to transform a large, unstructured knowledge base into an interactive conversational resource. The aim was to enable users to get instant, accurate, & context-aware answers through a natural language interface.

Contributions
  1. Architected & implemented a complete, end-to-end Retrieval-Augmented Generation (RAG) pipeline, from initial data ingestion to the final user-facing application.
  2. Engineered a scalable data ingestion & processing system to handle large volumes of unstructured text, creating an optimized knowledge base using vector embeddings.
  3. Designed & implemented an advanced, multi-stage information retrieval system, combining semantic search with traditional methods and sophisticated reranking to maximize relevance.
  4. Developed a robust backend service to integrate large language models (LLMs) via APIs, employing advanced prompt engineering to ensure accurate, reliable, and context-grounded answer synthesis.
  5. Containerized the entire full-stack application & its dependencies for reproducible, scalable deployment, and managed the deployment process to a cloud platform.
  6. Established a comprehensive monitoring & evaluation framework to rigorously assess system performance and track user interactions for continuous improvement.
Tools
Python, Docker, Generative AI (RAG), LLM APIs, Vector Databases, Streamlit, MongoDB, Sentence Transformers, FastAPI, GitHub Actions, Pandas, NumPy, Scikit-learn, SQL, REST APIs, Bash


Bewertungen

"Seine strategische KI-Expertise und proaktive F&E-Führung beeindruckten. Er verstand unser Feld schnell, leitete NLP- und Sentiment-Analysen und bewertete qualitative Aspekte nutzergenerierter Texte. Er analysierte Daten, benannte Hürden und lieferte einen klaren, wertvollen Strategieplan zur Entwicklung und Validierung robuster Modelle. Er vereint GenAI-Weitblick, analytische Strenge, klare Kommunikation und Pragmatismus. Klare Empfehlung für NLP/ML und datengetriebene Produktstrategien."

LetsVibe GmbH

CEO (Sebastian Kraiker)

"Alex is an exceptionally talented and pragmatic AI engineer. He single-handedly transformed our chaotic data ingestion into a standardized, industrial-grade ETL pipeline, which became a core asset for our entire team. His ability to tackle complex problems with robust, scalable solutions is outstanding. He consistently delivers high-impact results and drives projects forward with a rare degree of ownership. I recommend him without hesitation for any challenging data science or MLOps role."

Metroscope

CSO


Kontaktanfrage

Einloggen & anfragen.

Das Kontaktformular ist nur für eingeloggte Nutzer verfügbar.

RegistrierenAnmelden