21.10.2025 aktualisiert


Premiumkunde
nicht verfügbarDevOps, Data & AI Expert
München, Deutschland
Deutschland +2
HochschulabschlussSkills
DatabricksDevOpsawsGithub ActionsGitLab CIApache SparkApache KafkaApache AirflowBigDataDockerKubernetesTerraformAWS CDKInfrastructure as Code (IAC)MLOPSJavaPythonData Lake
Cloud Providers:
- Amazon Web Services
- Microsoft Azure
Linux
- Ubuntu
- Alpine Linux
- Amazon Linux
Programming and scripting languages
- Bash, Python, SQL
- Java
- R, Scala
- Javascript, Typescript
- Groovy
- C, C++
DevOps Tools and Services
- Docker, Podman
- Kubernetes
- Terraform
- AWS CDK
- Azure Kubernetes Service
- Ansible
- Amazon EKS
- AWS CloudFormation
- Azure Resource Manager
- Helm
BigData Tools and Platforms
- Databricks (AWS, Azure)
- Apache Spark (Kubernetes, Databricks, Standalone)
- Apache Airflow (AWS, Kubernetes)
- Apache Kafka
- AWS Glue
- Azure Data Factory
- Data Lakes (Amazon S3, Azure Data Lake Gen2)
- Luigi
- Azure Synapse Analytics
- Azure Stream Analytics
- Azure Machine Learning
- Amazon EMR
- Azure HDInsight
- Amazon Redshift
- Amazon Kinesis
- DBT
Machine Learning
- MLflow
- PyTorch
- Keras
- Azure Machine Learning
- Amazon SageMaker AI
- Amazon Bedrock
- Azure OpenAI
- Transformers
- GenAI
CI/CD
- Jenkins
- Gitlab CI
- GitHub Actions
- ArgoCD
- Azure DevOps
- Bitbucket
Monitoring Tools
- Amazon CloudWatch
- Azure Monitor
- Azure Log Analytics
- Grafana
- Grafana Loki
- Prometheus
- Dynatrace
Other Tools and Services:
- Microsoft Entra ID
- Maven
- Gradle
- Git
- jq
- REST-API
Sprachen
DeutschverhandlungssicherEnglischverhandlungssicherRussischMuttersprache
Projekthistorie
- Developing and testing ML applications using PyTorch, MLflow, Gradio, and FastAPI (PyTorch, MLflow, FastAPI, Gradio, psycopg2, Azure SDK, Microsoft Entra ID)
- Automating the ML model lifecycle with quality checks and promotion logic (MLflow, Python, MLOps)
- Developing and optimizing Python and SQL code for ETL jobs (FastAPI, psycopg2, PostgreSQL, Docker)
- Deploying and testing Transformer-based LLM models for GenAI applications on GPU-enabled AKS clusters using Docker and Helm (AKS, Docker, Helm, GPU)
- Configuring scaling, job scheduling, and resource optimization for ML workloads (AKS, Docker, Helm, GPU)
- Managing PostgreSQL queries, joins, and authentication via Microsoft Entra ID
- Resolving security vulnerabilities by updating dependencies, OS packages, and Docker images (Python, Vue.js, Nest.js, Ubuntu, Alpine Linux)
- Configuring Azure Data Lake Gen2, Azure Container Registry, and BinderHub environments
- Deploying applications and message queues with Helm and ArgoCD (Python apps, RabbitMQ, Keycloak)
- Implementing KEDA autoscaling, backup automation with Bash, and Dynatrace monitoring to optimize AKS workloads
- Designing, implementing, and testing data ingestion procedures in Azure Databricks using Python and PySpark for both initial and incremental loads into the data warehouse (Python, PySpark, SQL, Azure Databricks)
- Implementing data validation, error handling, and automated testing procedures to ensure data quality and reliability across ETL workflows in Azure Databricks (Python, PySpark, SQL, Databricks, unittest)
- Implementing ETL pipelines in Azure Databricks to extract and transform data from the staging layer and load it into the data warehouse layer based on customer requirements (Python, PySpark, SQL, Azure Databricks)
- Implementing ETL pipelines for ingesting and transforming data from various sources using Azure Data Factory (ADF, ETL, Azure)
- Implementing and maintaining CI/CD pipelines for Azure Databricks and Azure Data Factory in Azure DevOps using Bash and Python scripts (Azure DevOps, Databricks, ADF, Python, Bash)
- Redesigning CI/CD pipelines in GitLab to simplify the development lifecycle, enhance automation, and improve testing of CI/CD components (GitLab, CI/CD, DevOps, Bash, YAML)
- Developing and testing reusable CI/CD components in GitLab for automating the build and deployment of Java applications on Amazon Web Services, ensuring maintainability and scalability (AWS, GitLab, CI/CD, Bash, YAML)