27.11.2025 aktualisiert

**** ******** ****
verifiziert
Premiumkunde
20 % verfügbar

Senior Data Consultant | Machine Learning, AI Engineering, MLOps, Data Engineering, Databricks

Zürich, Schweiz
Weltweit
PhD in Theoretical Physics
Zürich, Schweiz
Weltweit
PhD in Theoretical Physics

Profilanlagen

Profile_Florian_Hinzpeter_EN.pdf

Skills

APIsKünstliche IntelligenzComputer VisionMicrosoft AzureBash ShellBig DataClusteranalyseDatenbankenContinuous IntegrationInformation EngineeringDevopsInfrastrukturPythonMachine LearningWindows PowershellRole Based Access ControlAzure Active DirectoryAzure Machine LearningScipyTransformerSoftwareentwicklungSQLSupport Vector MachineSupervised LearningData ScienceAzure Data FactoryPytorchReactJSFlaskLarge Language ModelsRandom ForestPrompt EngineeringApache SparkDeep LearningNaive BayesGenerative AIGitlabGitPandasPytestPysparkScikit-learnHuggingFaceXgboostBicepMachine Learning OperationsGPTDockerUnsupervised LearningDatabricks
AI Engineering
  • Tools
    • LangChain
    • DSPy
    • LangFuse
    • OpenAI ChatGPT API
    • MCP
    • LLamaIndex
    • ChromaDB, Weaviate
  • Concepts
    • Prompt Engineering
    • Retrieval Augmented Generation
    • Vector Database
    • Agent Architectures (ReAct, Chain of Thought)
    • LLMOps
Machine Learning
  • Tools
    • Scikit-Learn
    • CatBoost
    • XGBoost
    • SciPy
    • SparkML
  • Concepts
    • Supervised Learning (Random Forest, Boosted Trees, Support Vector Machine, Naive Bayes, K-NN)
    • Unsupervised Learning (Dimensionality Reduction: PCA, t-SNE, UMAP,
      Clustering: K-Means, DBSCAN, Hierachical Clustering)
Deep Learning
  • Tools
    • PyTorch
    • Huggingface
  • Concepts
    • Autoencoders, RNNs, LSTM, Transformers
    • Computer Vision (CNNs)
    • Generative AI: Large Language Models (LLM), Prompt Engineering (e.g. with LangChain), Fine Tuning, Parameter Efficient Fine Tuning, Generative Adversarial Networks
Responsible AI

Data Engineering
  • SQL
  • Python Pandas,
  • PySpark
  • Spark SQL
  • Delta Lake
  • Databricks
Azure Cloud
  • Azure Data Factory
  • Azure Blob Storage
  • Azure Machine Learning Studio
  • Azure Active Directory
  • RBAC
  • Databricks
  • Infrastructure as Code (ARM, Bicep)
Software Engineering & DevOps
  • Python
  • PyTest
  • Flask
  • Fast-API
  • Git
  • CI/CD
  • Gitlab
  • Azure DevOps
  • Poetry
  • PipEnv
  • Docker
  • Bash
  • Powershell

Sprachen

DeutschMutterspracheEnglischverhandlungssicherPortugiesischgutSpanischverhandlungssicher

Projekthistorie

Data Engineering

BASF

Industrie und Maschinenbau

>10.000 Mitarbeiter

Project roles:
Data Engineer

Tasks:
Lead Data Engineer
  • Development of scalable ETL Pipelines
  • technical development of Dashboards and integration of BI use-cases
  • Software Development
Tools:
Python, PySpark, SQL, Databricks, DeltaLake, Azure DevOps, Azure Data Factory, PowerBI

Predicting the length of hospital stays

DAK Gesundheit

Versicherungen

1000-5000 Mitarbeiter

Project roles:
Lead Software Developer and Senior Data Scientist

Tasks:
I developed the software of a ML Pipeline to predict the length of hospital stays.
I have taken the lead in technical and analytical as well as PM tasks.
The technical and analytical tasks included:
  • Analytical Problem Assessment
  • PoC development and evaluation,
  • ETL and Data Selection
  • ML Software Development in Python
Tools:
Python (Pandas, Scikit-Learn, PyTorch Catboost), SQL, Git and Gitlab, Poetry

Methods:
CatBoost Regression Model, OOP in Python, Scikit-Learn ML Pipelines, Feature Engineering and Selection

Recommendation Engine for health insurance products

DAK Gesundheit

Versicherungen

1000-5000 Mitarbeiter

Project roles:
Lead Software Developer and Senior Data Scientist

Tasks:
I developed the software for a ML Software that estimates product recommendations for health insurance products.
I have taken the lead in technical and analytical as well as PM tasks.
The technical and analytical tasks included:
  • ETL
  • Data Discovery and Selection
  • ML Software Development in Python
  • Operationalization of the model as a batch process
Tools:
Python (Pandas, Pytest, Scipy), SQL, Git and Gitlab, Poetry, Docker

Methods:
Probabilistical Graphical Models, OOP in Python, Unit-and Integration testing, CI/CD Pipeline

Zertifikate

Databricks Certified Data Engineer Associate

Databricks

2023

CI/CD YAML Pipelines with Azure DevOps

Udemy

2023

Databricks Certified Machine Learning Associate

Databricks

2022

Python 3: Deep Dive (Functional)

Udemy

2022

PyTorch for Deep Learning and Computer Vision

Udemy

2021

REST APIs with Flask and Python

Udemy

2021

Deployment of Machine Learning Models

Udemy

2021

Big Data Modeling and Management Systems

UC San Diego

2020

Introduction to Big Data

UC San Diego

2020

Fundamentals of Reinforcement Learning

University of Alberta

2020

Build Basic Generative Adversarial Networks (GANs)

DeepLearning.AI

2020

Build Better Generative Adversarial Networks (GANs)

DeepLearning.AI

2020

Machine Learning

Stanford Online - Coursera

2019

Neural Networks and Deep Learning

DeepLearning.AI

2019

Structuring Machine Learning Projects

DeepLearning.AI

2019

Introduction to TensorFlow for Artificial Intelligence, Machine Learning, and Deep Learning

DeepLearning.AI

2019

Improving Deep Neural Networks: Hyperparameter Tuning, Regularization and Optimization

DeepLearning.AI

2019

Sequence Models

DeepLearning.AI

2019

Convolutional Neural Networks

DeepLearning.AI

2019

Introduction to Data Science in Python

University of Michigan

2019

Applied Machine Learning in Python

University of Michigan

2019

Complete SQL Bootcamp

Udemy

2019

Version Control with Git

Atlassian

2019

Object oriented programming in Java

Edx

2018


Kontaktanfrage

Einloggen & anfragen.

Das Kontaktformular ist nur für eingeloggte Nutzer verfügbar.

RegistrierenAnmelden