09.04.2025 aktualisiert

**** ******** ****
verifiziert
Premiumkunde
60 % verfügbar

Data Science Professional | Machine Learning Engineer | GenAI Engineer | Python Dev | Team-Lead

Eichenau, Deutschland
Deutschland +2
M.Sc. Statistik
Eichenau, Deutschland
Deutschland +2
M.Sc. Statistik

Profilanlagen

Nelz_Michael_Arbeitszeugnis_230710_V2_Signed.pdf
unittests_article_en_nelz.pdf
genai_youtube_rag.pdf
mlops_azure.pdf
CV_NeloIntelligence_corpdesign_de_freelance.pdf
CV_NeloIntelligence_corpdesign_en_freelance.pdf

Skills

Agile MethodologieKünstliche IntelligenzAmazon Web ServicesComputer VisionUnterrichtenMicrosoft AzureBash ShellKreative ProblemlösungInfrastrukturPythonMachine LearningAzure Machine LearningScriptingTestenDeep LearningDatabricks
I'm a Senior Data Scientist experienced in optimizing Machine-Learning and Deep-Learning-Models, Management of Data-Science-Teams, building MLOps-infrastructures in Azure.
Continuous Improvement is key, as well in agile software-development when creating a software product and in Data-Science when staying up-to-date with the fastly evolving environment of AI.

Professional skills:
- Management of Data-Science-Teams (1 + years)
- Machine Learning, Deep Learning, Computer Vision with Python (scripting + oop) (10 + years including studies)
- GenAI, NLP with Python (2 + years)
- Agile software development (6 + years)
- ML-Ops on Azure (6 + years)
- ML-Ops on AWS (2 + years)
- Teaching Data-Science (Coding Workshops, Courses) (4 + years)

Supporting Skills:
- Software-Development with Java, C#, PHP, Bash-Scripting (10 + years)
- Unit- and E2E-testing (3 + years)

Sprachen

DeutschMutterspracheEnglischverhandlungssicher

Projekthistorie

Demand Forecast with GenAI Explanations

Lanxess AG

Transport und Logistik

>10.000 Mitarbeiter

This initiative represents a cutting-edge data science project aimed at crafting a scalable, robust, and highly accurate demand estimation model for better resource and delivery planning. Harnessing the full potential of Azure Cloud's advanced capabilities, the project employs state-of-the-art machine learning algorithms, Sentiment Analysis via LLMs, Model-Explanations via Dash and GenAI-Agents, large-scale data processing pipelines and cloud-based infrastructure to forecast demand across all business units. By optimizing production and logistics, this model drives efficiency and elevate decision-making.

- Creation of an end-to-end workflow tailored to accurately predict demand patterns and behaviors for all business units
- Two-Pronged Approach for Intermittent Demand Forecasting
 ▪ Binary Prediction: Identifying the occurrence of the next demand instance.
 ▪ Regression: Estimating the magnitude of the demand.
- Top-Down Forecast pronged together with Bottom-Up-Forecast to increase performance
- Implementation ensemble techniques to bolster prediction precision.
- Use of Azure Synapse for streamlined scalability and accessibility.
- Leveraging Large Language Models (LLMs) and Azure OpenAI to implement sentiment analysis for customer reports, enhancing qualitative insights.
- Implementation of a GenAI-Agent-System to use data and model logs to explain model outcome to model-users
- Deployment of the GenAI-Agent-System as plotly-Dash-App via Docker and Kubernetes
- Deployment of MLFlow-Tracking-Server via Docker and Kubernetes

Data Scientist for Optimization of Car Price Estimation and AI Implementations

Farie AG

Konsumgüter und Handel

10-50 Mitarbeiter

Development of a robust, scalable, and highly accurate car price estimation model using advanced data science techniques by leveraging the advanced capabilities of Google Cloud Platform (GCP) and VertexAI. Automization of time-consuming national-vehicle-code matching via fuzzy matching supported by LLMs (GPT-4o and Gemma from Google).
Proof of Concept for car-equipment-matching via LLMs to standardize the equipment overview on the website.
Proof of Concept for a car-suggestion Chat-Bot to help customers inform themselves about cars that fit their needs and suggest them fitting cars.

Data Scientist for Order Intake Prediction

IJUNO GmbH

Konsumgüter und Handel

50-250 Mitarbeiter

Implementation of a monthly Sales-forecast based on economic factors. The results reach the accuracy of the manual forecast are used for decision making to saving time. Knowledge sharing regarding deployment on Azure-ML or AWS Sagemaker.

Zertifikate

Generative AI with LLMs

DeepLearning.AI and Amazon

2024

Generative AI for everyone

DeepLearning.AI and Amazon

2024

DataBricks Generative AI Fundamentals

DataBricks

2024

DataBricks for Machine Learning

DataBricks

2024

Azure Data Science Associate

Microsoft

2023


Portfolio

item-0

MLOps Retraining

Automatic Retraining Workflow done with Azure
item-1

Boardgame Copilot

Android GenAI App that uses boardgame-rules via langchain and openai to help understand the rules and ask questions.
item-2

mlflow overview

Overview of training runs tracked in mlflow
item-3

training plots

training plots to evaluate model results in azure
item-4

azure-ml overview

Overview of training runs in azure-ml
exali-logo

exali Berufshaftpflicht-Siegel

Das original exali Berufshaftpflicht-Siegel bestätigt dem Auftraggeber, dass die betreffende Person oder Firma eine aktuell gültige branchenspezifische Berufs- bzw. Betriebshaftpflichtversicherung abgeschlossen hat.

Versichert bis: 01.01.2027


Kontaktanfrage

Einloggen & anfragen.

Das Kontaktformular ist nur für eingeloggte Nutzer verfügbar.

RegistrierenAnmelden