16.11.2025 aktualisiert


verifiziert
Premiumkunde
100 % verfügbarData Scientist & MLOps
Heidelberg, Deutschland
Weltweit
M.Sc. Computer ScienceSkills
APIsAmazon Web ServicesConfluenceJiraMicrosoft AzureBash ShellBig DataCloud ComputingFinanzenSpanischForecastingPythonMachine LearningOracle FinancialsSQL DeveloperScrumTensorflowKustoHandelPL/SQLTableauData SciencePytorchOffice365Large Language ModelsGrafanaApache SparkKerasPandasScikit-learnKubernetesMachine Learning OperationsDSGVOTürkischDockerDatabricks
Qualifikationen
- 5 Jahre Machine Learning
- (Sklearn, Tensorflow, Keras, Pytorch, Python, Shell, TimeSeries Forecasting, Event Modellierung)
- 3,5 Jahre MLOps
- (MLflow, Grafana, Kubernetes, Docker, ACA, Tableau, API Alerting & Monitoring)
- 5 Jahre Cloud Computing
- (Azure, AWS, Databricks, KQL, Oracle, PL/SQL)
- 5 Jahre Agiles Arbeiten
- (Jira, Confluence, Scrum, Office365)
Zertifikate
- Azure Fundamentals (4 of 4)
- Azure Data Science Associate
- Modern Forecasting in Practice
- Scalable ML on Big Data using Apache Spark
- Using ML in Trading and Finance
- Conference Speaker at ICISSP 2022
- (in progress) Databricks Data Engineering Associate/Professional
Languages
- Deutsch C2 (native)
- Englisch C2
- Spanisch A2
- Türkisch A2
Sprachen
DeutschMutterspracheEnglischverhandlungssicherSpanischGrundkenntnisseTürkischGrundkenntnisse
Projekthistorie
Industry: Telco
- Position: data scientist, lead developer, team size 4-6, agile scrum
- Design of custom documentation structure for component-rich architecture (Jira, Confluence)
- Development of a standard for exploratory data analysis
- Development in Databricks and Azure (incl. monitoring, alerting, ACA, Docker, KQL)
- Model optimization
- Software development in Python
- PoC for vector-based CosmosDB migration
- Stakeholder Management
Author of „PREUNN: Protocol Reverse Engineering using Neural Networks“ 2022, In ICISSP (pp.345-356))
Industry: Research, Cybersecurity
- Development and research of neural networks in Python and PyTorch
- Data analysis with Matplotlib and ML Explainability
- Presentation at ICISSP 2022 with best poster award
Joint research work for reinforcement learning + machine learning in IT security.
Industry: Telco
- Development of Big Data ETL pipelines based on common open source frameworks (Apache Hadoop, Apache Hive, Python, Apache Spark, Keras), AWS, Kubernetes, Docker
- Development of new functionalities (analytics modules, user feedback and model training processes) for internal analytics platform in Python
- Development of SQL and PL/SQL load runs based on specific requirements and storage of the results in SQL databases (Oracle)
- Development of models for the detection of anomalies in time series and granular data, event modelling
- Development of decision models (e.g. for alarm generation)
- Development of causal models for automated root cause analysis
- Development of process components for text analysis for the generation of anomaly explanations
- Create related dashboards (Tableau)
- Creation of monitoring functions (Grafana), as well as documentation